

	pag
INTRODUCTION	
 Car exterior features Identification data - Location of identification data on vehicle Dimensions - Weights Performance - Fuel consumption Capacities Characteristics of lubricants 	
TECHNICAL DATA	
ENGINE	
 Characteristics Typical curves Cylinder block crankcase, crankshaft and associated components Counter-balance shafts Cylinder head assembly and valve gear 	8 9 10 14
timing - Lubrication - Cooling system - Fuel system - Supercharging	16 19 20
CLUTCH	20
GEARBOX AND DIFFERENTIAL	22
PROPELLER SHAFT	25
REAR DIFFERENTIAL	25 26
BRAKING SYSTEM	28
STEERING	30
WHEELS	31
FRONT SUSPENSION	
REAR SUSPENSION	32
	33
ELECTRICAL EQUIPMENT	35
 Starting Recharging Electronic injection/ignition Over-boost device 	36 38 40

3/4 front view

4 rear view

Identification data and location on vehicle

00.0

IDENTIFICATION DATA

	CHASSIS	ENGINE	VERSION	5 speed gearbox
2000 ie turbo	ZLA 831 ABO	831 C5.000	831 ABO 24	•

LOCATION OF IDENTIFICATION DATA ON VEHICLE

Chassis identification

- Vehicle type:

(ZLA 831 ABO)

- chassis manufacture number.

NOTE The engine type and number are stamped on the cylinder block/crankcase behind the engine oil cartridge filter.

B V.I.N. Plate

- A. Name of Manufacturer.
- B. Type approval number.
- C. Vehicle type identification code.
- D. Chassis manufacture number.
- E. Maximum authorized weight of vehicle fully laden.
- F. Maximum authorized weight of vehicle fully laden plus tow.
- G. Maximum authorized weight on first axle (front).
- H. Maximum authorized weight on second axle (rear).
- I. Bodywork version code.L. Engine type.
- M. Spares number.
- N. Correct value of smoke absorption coefficient (for diesel engines).

Bodywork paint identification plate

Found inside the boot lid

- A. Paint manufacturer
- B. Description of colour
- C. Colour code
- D. Colour code for touching up or respraying

DIMENSIONS

(*) Vehicle unladen Luggage compartment capacity with rear seat backrest in normal position 200 dm (7.06 cu ft)³. Luggage compartment capacity with rear seat folded down:940 dm (33.19 cu ft)³.

WEIGHTS (in kg)

			1215
	+450		1665
			911
Kerb weight	erb eight		754
			1200

 $\overline{00.0}$

Layout of mechanical components

Introduction

_							
О	CE	3 C 4	סר	NЛ	А	AI.	~=
г	EF	١r	JN	IVI	\mathbf{A}	W	CE

RFORMANCE		
Speed kph	@ 000	60
		95
	000	140
	000	185
	006	215
	000 00 6	60
Maximum	9 00	58
climable gradient	9 9	41
%	99	25
76		17
	000	12
	000	68
EEC fuel consumption	Urban cycle (A)	10,8
EEC fuel consumption figures (litres/100km)	Constant speed 90 kph (B)	7,7
	Constant speed 120 kph (C)	10,2
	Average consumption (CCMC proposal) A+B+C 3	9,6

	Description	Unit		antity
	Description		dm ³	(kg)
Centralist	Petrol O.R.(98-100)		57	_
	50%	Total capacity of cooling system	6,2	_
	VS+ Superstagionale (SAE 10 W) (SAE 20 W) (SAE 30) (SAE 40)	Total capacity	5,9	5,0
	VS+ Supermultigrado (SAE 15 W/40) VS+ Turbo Synthesis (SAE 15 W/40)	Partial capacity (periodic replacement)		4,80
五五	a = TUTELA ZC 80S		a –	3,40
	b = TUTELA GI/A		b –	_
(/ <u>/A</u> /7	TUTELA W 90/M DA	a b	a –	_
7/0 -		Self-locking	b –	1
H (AT)	a = TUTELA GI/A	a P b	a -	061
	$\mathbf{b} = \mathbf{K} 854$		b –	_
	c = TUTELA MRM2	c	c –	_
Car.m.	TUTELA DOT 3	Total capacity	_	0,30
	+ DP1	○ 3% ~-10°C 50% ~-20°C 100%	2	_

Characteristics of Olio Fiat lubricants for cars and commercial vehicles

	ne of	Description International designation	Usage	
pro	SAE 40	A44.V4 444.V4 V4 V	Temperature 0°C÷ > 35°C	
VS Super	SAE 30	Low ash content detergent oil for petrol engines. Service API "SE". Exceeds European specification CCMC-G1	Temperature 0°C ÷ <35°C	
stagionale	SAE 20 W	SE : Exected's European speciments of the second	Minimum temperature -15°C÷ 0°C	
	SAE 10 W/30	Low ash content detergent oil for petrol engines. Service API	Temperature below -15°C÷30°C	
VS Super multigrado	SAE 15 W/40	"SF". Exceeds European specification CCMC-G2	Temperature −15°C÷ >35°C	
VS Turbo Sy SAE 15 W/4		Synthetic base detergent oil for petrol engines. Service API "SF". Exceeds European specification CCMC-G2	Temperature −15°C÷ >40°C	
SAE 13 W/4	SAE 40	ST . Zilverte Zilver	Temperature 0°C÷50°C	
VS Diesel Supersta-	SAE 30	Oil for Diesel engines. Service API "CD". Satisfies specifications MIL-L-2104 D and CCMC-D2	Temperature - 5°C ÷ 30°C	
gionale	SAE 20 W		Temperature -15°C÷15°C	
VS Diesel	SAE 10 W/30	Oil for Diesel engines. Service API "CD".	Temperature below -15°C ÷ 30°C	
Supermul- tigrado	SAE 15 W/40	Satisfies standards MIL-L-2104 D and CCMC-PD1	Temperature $-15^{\circ}\text{C} \div > 40^{\circ}\text{C}$	
VS Turbo D		Oil for Diesel engines. Service API "CD". Satisfies standards MIL-L-2104 D and CCMC-PD1	Temperature −15°C÷ >40°C	
TUTELA Z	 C 80S	SAE 80/W oil. Satisfies standards MIL-L-2105 and API GL-4	Manual gearboxes and differentials	
TUTELA Z		SAE 80 W/90 non EP oil for manual gearboxes containing anti-wear additives	Non hypoid gearboxes and differential	
TUTELA W 90/M DA		SAe 80 W/90 EP oil specially for normal and self-locking differentials. Satisfies standards MIL-L-2105 C and API GL5	Hypoid differentials Self-locking diffs. Steering boxes	
TUTELA G		"DEXRON II" type oil for automatic transmissions	Automatic gearboxes power assisted steering	
TUTELA J	OTA 1	Lithium soap based grease, consistency NLGI=1	Greasing vehicle except for components particularly exposed to water requiring special greases	
TUTELA N	1RM2	Lithium soap based water-repellant grease containing molybdenum disulphide, consistency NLGI = 2	Constant velocity joints	
TUTELA N	4R3	Lithium soap based grease, consistency NLGI=3	Wheel hub bearings, steering rods, various components	
TUTELA I	OOT 3	Fluid for hydraulic brakes, meeting standards USA FMVSS n. 116, SAEJ 1703, ISO 4925. CUNA NC-956-01	Hydraulic brakes and hy draulically operated clutches	
K 854	Lithium soap based grease, consistency NLGI = 000, containing molybdenum disulphide		Rack and pinion steering boxes Load proportioning	
SP 349		Special castor oil and sodium soap based grease containing		
Liquido Au	tofà DP1	Alcohol based detergent fluid	To be used undiluted or diluted for windscreen and headlamp washers Cooling circuits	
Liquido Pa	raflù" FIAT	Mono-ethylene glycol based anti-freeze for cooling system		
Diesel Mix		Additive with protective action for Diesel engines	To be mixed with diese fuel (17 cc per 10 litres)	

CHARACTERISTICS

CHARACTERISTI	CS			
			831 C5.000	
	Cycle		OTTO 4 stroke	
	Number of cylinders		4	
	Cylinder liner (bore)	mm	84	
	Stroke	mm	90	
	Capacity	cc	1995	
= 9	Compression ratio		$8\pm0,1$	
1	Max power EEC	kW (CV)	133 (185)	
		rpm	5300	
	Max torque EEC	daNm (kgm)	29,8 (31)	
	man torque DDC	rpm	3500	

Engine: typical curves

00.10

Engine power curves obtained by EEC method

The power curves illustrated can be obtained with the engine overhauled and run in, without a fan and with an exhaust silencer and air filter fitted at sea level.

Test bench cycles for overhauled engines

During the bench test for the overhauled engines it is not advisable to run the engines at maximum speed but to stick to the figures prescribed in the table; complete the running in of the actual engines in the vehicle.

Test	Time	Load
speed	in	on the
(rpm)	minutes	brakes
800 ÷ 1000	10'	no load
1500	10'	no load
2000	10'	no load

Technical data DELTA HF integrale Engine: cylinder block/crankcase, crankshaft and associated components

$\overline{00.10}$

DES	SCRIPTION		Values in mm
		L	23,100 ÷ 23,200
		$\int_{\emptyset} \frac{\mathbf{A}}{\mathbf{A}}$	56,717 ÷ 56,723
		$\varnothing \left\langle \stackrel{=}{=} \overline{\mathbf{B}} \right\rangle$	56,723 ÷ 56,729
1	Main bearing supports	(C	56,729 ÷ 56,735
	Cylinder bore &	$\varnothing\left(\stackrel{\sqsubseteq}{=} 0.010\right)$	84,000 ÷ 84,050
		Y	25
	Piston	$\left(\begin{array}{cc} \mathbf{A} \end{array}\right)$	83,940 ÷ 83,950
3	x	$\varnothing \left\langle \; \equiv \overline{\mathbf{c}} \; \right $	83,960 ÷ 83,970
	<u>→</u>	$\left(\begin{array}{c} \mathbf{E} \end{array} \right)$	83,980 ÷ 83,990
	, , , , , , , , , , , , , , , , , , ,	X TYXCY >	0,4
3	Differ between	ence in weight en pistons	. ±5 g
3-1	Piston	-Cylinder bore	$0,050 \div 0,070$
3	Gudgeon pin	$\varnothing \left\{ \begin{array}{c} = 1 \\ \equiv \end{array} \right.$	21,996 ÷ 21,999
	housing	2	21,999 ÷ 22,002

DELTA HF integrale

Engine: cylinder block/crankcase, crankshaft and associated components

DESCRIPTION		Values in mm
	~ \(\ - \)	21,991 ÷ 21,994
4	$\varnothing \left\{ \equiv \frac{1}{2} \right\}$	21,994 ÷ 21,997
Gudgeon pin	Ø LANCIA>	0,2
4-3 ⇒ ← Gudg	geon pin - Housing	0,002 ÷ 0,008
	1	1,535÷1,555
3 Piston ring grooves	2	2,020 ÷ 2,040
S. Covos	3	3,967 ÷ 3,987
		1,478 ÷ 1,490
ø I		1,987÷1,990
5	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,925÷3,937
Piston rings	Ø LANCIA>	0,4
1 Iston Imgs	1	0,045 ÷ 0,077
5-3 $\Rightarrow \Leftrightarrow$ Piston rings Piston ring groov	/es	$0,030 \div 0,062$
- Tiston Ting groot	3	$0,030 \div 0,062$
	1	0,30÷0,50
5-1	2	0,30÷0,50
Opening at end of rings in cylinder bore	3	0,25÷0,40
	Ø	24,988 ÷ 25,021
Small end bush housing		53,904 ÷ 53,910
6 Big end bear housing	$\log \qquad \varnothing_2 \left\langle \begin{array}{c} - \\ = \\ 2 \end{array} \right\rangle$	53,898 ÷ 53,904
	3	53,892 ÷ 53,898

Technical data DELTA HF integrale Engine: cylinder block/crankcase, crankshaft and associated components

$\overline{00.10}$

DESCRIPTION			Values in mm
\emptyset_2		Ø1	25,065 ÷ 25,090
7 Small end	$\varnothing_2 \stackrel{\mathbb{F}_{\underline{\alpha}}}{=} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right.$	_ 1	22,004 ÷ 22,007
bush	$\mathcal{D}^2 \longrightarrow \left\{ \frac{1}{2} \right\}$	2	22,007 ÷ 22,010
4-7 ⇒ ⇔	Gudgeon pin Small end bush		$0,010 \div 0,016$
7-6 ⋛	Small end bush Bush housing		0,044 ÷ 0,102
		Α	52,998 ÷ 53,004
Main journal			52,992 ÷ 52,998
Ø ₁		С	52,986 ÷ 52,992
8		1	50,799 ÷ 50,805
	Frank ins \emptyset_2	_ 2	50,793 ÷ 50,799
-		3	50,787 ÷ 50,793
		L	27,975 ÷ 28,025
Crankshaft bearir	ngs (A	0,838 ÷ 1,844
9	$\mathbf{L} \left\{ \begin{array}{l} \mathbf{I} \\ \mathbf{I} \end{array} \right.$	B	1,844 ÷ 1,850
		С	1,850 ÷ 1,856
arphi	Ø LANCIA	<	$0,254 \div 0,508$

Technical data

DELTA HF integrale

Engine: cylinder block/crankcase, crankshaft and associated components

00.10

DES	CRIPTION		Values in mm
9-8		Crankshaft bearings - Main journals	0,025 ÷ 0,049
	\bigcirc	(A	1,527 ÷ 1,533
		Big end bearings L B	1,533 ÷ 1,539
10		C	1,539 ÷ 1,545
		\varnothing LANCIA $<$	0,254 ÷ 0,508
10-	8 🕽 🗀	Big end bearings - Main journals	0,033÷0,057
11		Thrust S washers	2,310 ÷ 2,360
		s LANCIA>	0,127
11-	1-8 Crankshaft end float		$0,055 \div 0,305$

Diagram showing fitting of connecting rod-piston assembly and direction of rotation in engine

1 = Area where matching number of cylinder bore to which connecting rod belongs is

The arrow shows the direction of rotation of the engine as seen from the timing side.

1mm = Gudgeon pin offset on the piston.

13

DELTA HF integrale

Technical data
Engine: counter-balance shafts

DESCRIPTION	Values in mm	
25 Counter-balance shafts	nº 2	
Shafts driven	by toothed belt	
	36,920 ÷ 36,940	
26	37,020 ÷ 37,040	
Bushes for counter-balance shafts in housing	38,020 ÷ 38,040	
	36,850 ÷ 36,870	
$25 \qquad \bigcirc_3 \qquad \bigcirc_2 \qquad \bigcirc_1 \qquad \bigcirc_2 \qquad \bigcirc_2 \qquad \bigcirc_3 \qquad \bigcirc_2 \qquad \bigcirc_3 \qquad \bigcirc_3 \qquad \bigcirc_2 \qquad \bigcirc_3 \qquad$	36,950 ÷ 36,970	
Counter-balance shaft bearings Ø3	37,950 ÷ 37,970	
26-1 Shaft bushes Cylinder block/crankcase seats	0,080 ÷ 0,140	
25-26 Shaft bearings-Bushes	0.050÷0.090	

Partial cross section of engine

Technical data
Engine: cylinder head assembly and valve gear components

DELTA HF integrale

DESC	CRIPTION			Values in mm	
12		Valve guide bore in cylinder head ∅		13,950 ÷ 13,977	
	Ą	Valve α		45°±5′	
	<u> </u>	seats		45° ± 5′	
		Ži.	L	~2	
	Ø1		Ø:	$8,022 \div 8,040$	
13	Valve guides	Valve guides Ø2		14,040 ÷ 14,058	
13		varve gardes \$\infty_2\$		13,988 ÷ 14,016	
	ϕ_2 ϕ_2 LANGE >			0,05-0,10-0,25	
13_1	2 =	Valve guide Bore in cylinder head		$0,063 \div 0,108$	
13-1		Bore in cylinder head		$0,021 \div 0,066$	
			$\left(\begin{array}{c c} \varnothing_1 \end{array}\right)$	7,974 ÷ 7,992	
	<u> </u> ₩ ^Ø 1		$\left\{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	43,300 ÷ 43,700	
14	Tr. coversor	Valves -	α	45° 30′ ± 5′	
17		varves	(\varnothing_1)	$7,974 \div 7,992$	
	\sim	2	$\left\langle \begin{array}{c} \mathbb{Z}_2 \end{array} \right $	35,850 ÷ 36,450	
			α	45° 30′ ± 5′	

Technical data

DELTA HF integrale Cylinder head assembly and valve gear components

DESC	CRIPTION		Values in mm		
14-13 Valves - Valve guides			$0,030 \div 0,066$		
			14,13÷15,11 daN		
		H ₁	31		
15	1 H ₁ 1 H ₂	P ₂	26,39 ÷ 28,74 daN		
	Internal valve spring	H ₂	21,5		
		\mathbf{P}_{i}	36,68 ÷ 39,6 daN		
		H 1	36		
16	H ₁	P_2	55,91 ÷ 60,82 daN		
	External valve spring	H_2	26,5		
	1Ø1_ \$\sqrt{\omega}2 \qqrt{\omega}3	Ø١	29,944 ÷ 29,960		
	*	\emptyset_2	45,755 ÷ 45,771		
	Camshaft bearings	\emptyset ₃	46,155 ÷ 46,171		
17	*		9,1		
	Cam lift		8,6		
	Camshaft bearings in camshaft housing	Øı	30,009 ÷ 30,034		
	ϕ_1 ϕ_2 ϕ_3	Ø2	45,800 ÷ 45,825		
18		Ø3	46,200 ÷ 46,225		
	Tappet housings	Ø	37,000 ÷ 37,025		
	Camshaft bearings	Øı	$0,049 \div 0,090$		
17-	Camshaft housing supports	Ø2-Ø3	$0,029 \div 0,070$		
19	Tappet	Ø	36,975 ÷ 36,995		

Technical data

Technical data

Engine: cylinder head assembly and valve gear components

DELTA HF integrale

00.10

DESCRIPTION				Values in mm	
19-18	Tappet Housing in cylinder head		r head	$0,005 \div 0,050$	
20	$20 \qquad \mathbf{s} \stackrel{\longleftarrow}{=} \qquad \mathbf{S} \left(\stackrel{-}{=} 0,05 \right)$ Shim		0,05	3,25 ÷ 4,70	
		clearance for timing check			0,80
17-20	*				0,80
17-20	War war war	operational	junia.	*	0,35 ÷ 0,04
	clearance		Araban sa		0,40 ÷ 0,04

TIMING ANGLES

inlet	opens BTDC	8°
mict	closes ABDC	42°
exhaust	opens BTDC	42°
	closes ABDC	1°

Technical data Engine: lubrication

00.10

	Values in mm		
Oil pump	lobe gears		
Pump operated	through crankshaft		
Oil pressure relief valve	incorporated in crankshaft front cover		
between pump casing and driven gear	0,080÷0,186		
between upper side of gears and pump cover	0,025 ÷ 0,056		
Full flow filter	cartridge		
Insufficient oil pressure sender unit	electrical		
Operating pressure at a temperature of 100 °C	$3,4 \div 4,9 \text{ bar } (3,5 \div 5 \text{ kg/cm}^2)$		
Pi	11,1÷12,1 daN		
Oil pressure relief valve spring H ₁	35,3		

Technical data

Technical data

Engine: cooling system-fuel system-supercharging

DELTA HF integrale

00.10

COOLING SYSTEM

Cooling circuit			coolant circulation via centrifugal pump, radiator and electric fan operated by thermostatic switch	
Water pump opera	ated		through belt	
	Thermal switch	(****)	86°÷94°C	
	to engage fan	(stop)	81°÷89°C	
	opens		81°÷85°C	
Engine cooling water thermostat		max opening	97°C	
		valve travel	≥7,5 mm	
Fitting clearance between impeller			0,6÷1 mm	
Pressure for checking radiator water tightness			0,98 bar	
Pressure for checking calibration of spring loaded overflow valve for expansion tank			0,98 bar	

FUEL SYSTEM

Pump	electrical	
Flow rate	~ 120 litres/h	

SUPERCHARGING (with turbo-charger activated by exhaust gases with waste-gate valve)

Turbo-charger type:	Garrett T3	
Maximum supercharging pressure	l bar	

Checking engine idle speed and carbon monoxide emissions

Engine idle speed	rpm	800÷900	(750÷800) (*)
CO idle emissions	(%)	1,5	±0,5

(*) With VAE valve disconnected

Techynical data Clutc

00.18

	Values in mm
Туре	dry, single plate
Operating mechanism	diaphragm spring
Spring loading	600 daN
Ø1	230
Lining \emptyset_2	142
Distance between pedal fully depressed and in rest position	155±5
Clutch release	mechanical

00.21-27

GEARBOX

GEARBOX			
Market Ma	spring ring (Porsche type)		_
Synchronizers	baulk ring type	0	
	straight toothed		000 000
Gears	helical toothed		200
			3,500
			2,235
=			1,518
Gear ratios			1,132
		000	0,928
		000	3,583
	Crown wh and pinion reduction	eel	56/18 (3,11)
			10,888
			6,953
		000	4,722
Ratio at the wheels	<u> </u>		3,521
- · · - · · · · · · · · · · · · · · · ·			2,887
		000	11,146

00.21-27

CENTRE DIFFERENTIAL

CENTRE DIFFERENTIAL	
Differential internal casing bearing	conical roller bearing
Adjustment of bearing pre-loading	by shims
Thickness of shims LANCIA (= 0,05) mm	1,00÷1,60
Interference to obtain exact mm bearing pre-loading	bearings not pre-loaded = 0,12 bearings pre-loaded (350 daN) = 0,08

FRONT DIFFERENTIAL

	rance between satellite mm	≤0,10
Adjustment of clear satellite gears	rance between planet and	cannot be adjusted

Technical data Gearbox and differential

DELTA HF integrale

00.21-27

IDLER GEAR

IDLER GEAR	
Idler gear ratio	43/19 (2,263)
Crown wheel bearing rolling torque	0,18÷0,20
Adjustment of crown wheel bearings	by shims
Thickness of shims $\left({=} 0,025 \right) \text{ mm}$	1,475 ÷ 2,90
Adjustment of pinion position	by shims
Thickness of shims $\left(\begin{array}{c} = \\ = \end{array} \right) 0,02 $	2,55 ÷ 3,35
daNm Pinion bearing rolling torque	0,08÷0,12
mm Clearance between crown wheel and pinion	$0.08 \div 0.15$
Adjustment of clearance between crown wheel and pinion	by shims
Thickness of shims $\left(\stackrel{=}{=} 0,025 \right) \text{ mm}$	1,475 ÷ 2,90

Technical data Propeller shaft

00.24

Туре		in three sections
Supports		2 \begin{cases} 1 \text{ on the centre section with a ball bearing on the support } 1 \text{ on the rear section with a ball bearing inside the dust cover for the support} \end{cases}
Sliding constant velocity joints		1, on the front section
Universal joints		2, on the centre section
Splined joint		1, on the rear section
Spider radial clearance	mm	$0.01 \div 0.04$
Thickness of shims for adjusting spider radial clearance	mm	1,50-1,53-1,56-1,59-1,62
Spline backlash	mm	$0,175 \div 0,350$

Crown wheel and pinion reduction	≽	19/43 (2,263)
	@ 0.0	10,304
		6,580
= I=		4,468
	000	3,332
Ratio at the wheels	000	2,732
	000	10,548
Bevel pinion bearings rolling torque	> daNm	0,08 ÷ 0,12
n		
Adjustment of bevel pinion position		by shims
Thickness of shims	nm 0,05	2,55 ÷ 3,35
Differential internal casing bearing		conical roller bearing
Crown wheel bearings rolling torque	daNm	$0,18 \div 0,20$
Crown wheel bearings folling torque		
Clearance between crown wheel and p	mm	$0.08 \div 0.15$

Adjustment of clearance between crown wheel and pinion	
Adjustment of bearing pre-loading	by shims
Thickness of differential internal casing bearing pre-loading adjustment shims	$0,18 \div 0,20$

FRONT BRAKE	ES		Values in mm
s + +		Ø	284
	Disc (21,90 ÷ 22,10
Ø	s {		20,9
<u>+</u>		allowed	20,2
COLLEGE DAY	Brake s <	allowed	1,5
↓ ø	Caliper	Ø	54
	Master cylinder (pump)	Ø	22,225 (7/8")
	Servo brake		ISOVAC 7"
	Distance of hydraulic piston push rod from master cylinder support plate	L	0÷0,3

REAR BRAKES

S		Ø	227
	Disc (10,70 ÷ 10,90
Ø	S {		9,70
<u></u>	(.	< allowed	9
S CONSTRUCTION AND ADDRESS OF THE PROPERTY OF	Brake pads s	< allowed	1,5
* Ø	Caliper	Ø	34
	Load proportion	ing valve	acting on the rear wheels
	Ratio (reduction)	= + = + = +	0,36

Hydraulic circuit for left front and right rear brakes
Hydraulic circuit for right front and left rear brakes

Diagram showing hydraulic braking system and mechanically operated handbrake

3/4 front view with cross section of left front wheel

Туре		rack and pinion power assisted
= - -	no. of turns lock to lock	2,835
Ratio	rack travel	134 mm
Ø	Minimum turning circle	10,4 m
a1 +	$\begin{cases} \text{outer} & \alpha_1 \\ \text{wheel} & \end{cases}$	30° 46′
Steering angle	inner wheel \alpha_2	35° 4′
	Steering column	with 2 universal joints

WHEELS

		type	195/55 - VR - 15"	
		front	average load	2 bar
			full load	2,2 bar
Т	Tyre		average load	2 bar
Tyre		rear	full load	2,2 bar
R	im		type	in light alloy 6 J x15"

Spare wheel with 4Jx15 rim"AH2-40 and tyre 115/70 R 15" XTL Speed limit: 80 kph (50 mph). Inflation pressure: 4,2 bar

WHEEL GEOMETRY	Y		unladen vehicle (*)
	camber (**)		$-40' \pm 30'$
	caster (**)		3° 10′ ± 30′
Front suspension	toe in	•	-2÷1,5 mm (•)
	camber		- 55′ ± 30′
Rear suspension	toe in	•	3 ÷ 5 mm (•)

With tyres inflated to correct pressure and vehicle in running order. (**) Angles cannot be adjusted (•) Measured on the 360 mm diameter

Technical data Front suspension

DELTA HF integrale

00.44

Front suspension independent, Mac Pherson type with lower track control arm and damper comprising double acting, gas, telescopic, hydraulic shock absorber and offset coil spring. Stabilizer bar

Coil spring

Diameter of wire	mm	$13,1 \pm 0,05$
Number of turns		6,39
Direction of coil		clockwise
Height of spring released	mm	442,3
Height of spring under a load of 412,8 daN	mm	198
The springs are subdivided into two categor identifiable by a mark: yellow (1) for those under a load of: 412,8 daN	ries,	>198
green (1) for those under a load of: 412,8 daN		≤198

⁽¹⁾ Springs of the same category must be fitted.

Shock absorbers

Type: telescopic, hydraulic, double acting		Way-Assauto
Travel	mm	158
Maximum extension	mm	521,5

Rear suspension independent, Mac Pherson type with lower longitudinal arm and damper comprising double acting hydraulic telescopic shock absorber and offset coil spring.

Stabilizer bar

Coil spring

Coil spring	
Diameter of wire mm	11.9 ± 0.05
Number of turns	3,86
Direction of coil	clockwise
Height of spring released mm	316
Height of spring under a load of 412,8 daN mm	173
The springs are subdivided into two categories identifiable by a mark:	
yellow (1) for those under a load of: 268 daN having a height of mm	>173
green (1) for those under a load of: 268 daN having a height of mm	≤173

⁽¹⁾ Springs of the same category must be fitted.

Shock absorbers

	Way-Assauto
mm	190
mm	590

 $00.\overline{55}$

SUMMARY

SUMMAN	
STARTER MOTOR	M. Marelli E95 - 1,1 kW - 12 V
ALTERNATOR	M. Marelli AA125R - 14 V - 65 A
VOLTAGE REGULATOR	M. Marelli RTT 119 AC
BATTERY	12 V - 45 Ah - 225 A
IGNITION SYSTEM	Weber electronic injection/ignition
DISTRIBUTOR	DT 543 AX
IGNITION COIL	M. Marelli BAE 504 CK
IGNITION COIL WITH CONTROL UNIT	M. Marelli AEI 600 A
SPARK PLUGS	Fiat V45 LSR M. MARELLI F8 LCR Bosch WR6 DC Champion RN7 YC

DELTA HF integrale

Technical data
Electrical equipment: starting

00.55

Mot	or: type		M. Marelli E95 - 1,1 kW - 12 V
Volt	age	V	12
Nor	ninal power	kW	1,1
Rot	ation, pinion side		clockwise
No.	of poles		4
Fiel	d coil		in series-parallel
Eng	agement		free wheel
Ope	ration		soleonid
End	float of armature shaft	mm	$0,15 \div 0,45$
Data for bench test	Operating test (*): current speed voltage torque developed Engagement test (*): current voltage torque developed Free running test (*): current voltage speed	A rpm V daNm A V daNm A V rpm	270 1750 9,2 0,65 $530 \div 570$ $6,6$ $ ≥ 1,6$ $35 \div 45$ $11,6 \div 11,7$ $8500 \div 9500$
Relay	Winding resistance (*) $\begin{cases} \frac{\text{pull}}{\text{hold}} \end{cases}$		$0,33 \div 0,37$ $1,13 \div 1,27$
ation	Internal splines and shaft bushes	32	VS- SAE 10 W
Lubrication	Sleeve and intermediate disc		TUTELA MR3

^(*) Data obtained at an ambient temperture of 20 °C.

NOTE When overhauling it is not necessary to undercut the insulator between the commutator bars.

STARTER MOTOR - TYPICAL CURVES

M. Marelli E 95 - 1,1 kW - 12 V

Diagram showing starter motor M. Marelli E 95 - 1,1 kW - 12 V

DELTA HF integrale

Technical data
Electrical equipment: recharging

00.55

ALTERNATOR

Make and type		M. Marelli AA 125R - 14 V - 65 A
Nominal voltage	v	12
Maximum current	A	65
Cut in speed when warm	rpm	1050 ÷ 1150
Current delivery on battery at 7000 rpm at operating temperature	A	≥63
Field winding resistance between the slip rings (*)	Ω	$2,6 \div 2,8$
Direction of rotation (seen from control sid	le)	clockwise
Engine/alternator ratio		1:2
Diode rectifiers		bridge

^(*) Data obtained at an ambient temperature of 25 °C.

VOLTAGE REGULATOR

Туре		Built in electronic RTT 119 AC	
Alternator test speed	rpm	7000	
Thermal stabilization current	A	30÷35	
Test current	A	32÷33	
Regulation voltage (*)	V	14 ÷ 14,3	

^(*) Data obtained at an ambient temperature of 20 °C.

BATTERY

Nominal voltage	V	12
Capacity (20 hour discharge)	Ah	45

ALTERNATOR – TYPICAL OUTPUT CURVES

(obtained at operating temperature at a constant voltage of 13.5 V with bedded in brushes)

M. Marelli AA 125 R - 14 V - 65 A

Wiring diagram for Marelli alternator

= Ignition switch with key

Y = Battery recharging warning light (12V - 3/5W) R = Electronic voltage regulator

Typical voltage regulator curve FIMM RTT 119 AC

Technical data DELTA HF integrale Electrical equipment: electronic injection/ignition

00.55

ELECTRONIC IGNITION POWER MODULE

Make and type	M. Marelli AEI 600A
Firing order	1 - 3 - 4 - 2

DISTRIBUTOR

Make		M. Marelli
Туре		DT 453 AX
Built in rotor arm resistance	Ω	1000
Electro-magnetic impulse generator coil winding resistance at 20 °C	Ω	758 ÷ 872

COIL

Make		M. Marelli
Туре		BAE 504 CK
Ohmic resistance of primary winding at 20 °C	Ω	0,415÷0,495
Ohmic resistance of secondary winding at 20 °C	Ω	4320 ÷ 5280

TOP DEAD CENTRE AND RPM SENSOR

Make and type		M. Marelli SEN 8 D	
Sensor winding resistance	Ω	612÷748	
Distance (gap) between sensor and crankshaft pulley	mm	0,4÷1	

ENGINE ADVANCE

Minimum from 800 to 850 rpm at 0.43 bar (0.60 bar)*	15° ± 2°
Maximum at 4000 rpm at 0.43 bar (0.299 bar)*	40° ± 2°

SPARK PLUGS

Make and type	Fiat V 45 LSR	Bosch WR 6 DC	Champion RN7YC	M. Marelli F8LCR	
Thread		M 14 × 1,25			
Electrode gap	0,6÷0,7 mm				

DELTA HF integrale

Electrical equipment: electronic injection/ignition

 $\overline{00.55}$

I.A.W. ELECTRONIC INJECTION SYSTEM COMPONENTS

DESCRIPTION	QUANTITY	ТҮРЕ
ELECTRONIC CONTROL UNIT	1	WH4E.03/OAO-F6
BUTTERFLY CASING	1	52 CFL 15
INJECTOR	4	IW 025/01
ENGINE IDLE AUTOMATIC ADJUSTMENT SOLENOID VALVE	1	VAE 02
RESSURE REGULATOR	1	RP1/3 bar
AIR TEMPERATURE SENSOR	1	ATS 04
WATER TEMPERATURE SENSOR	1	WTS 05
ABSOLUTE PRESSURE SENSOR	1	APS 02/01
BUTTERFLY VALVE POSITION SENSOR	1	PF 09/01
FUEL FILTER	1	FI 02/01
LECTRIC UEL PUMP	I	PI 022/2

Electrical equipment: electronic injection/ignition

00.55

DIAGRAM SHOWING INJECTION/IGNITION CONTROL UNIT CONNECTIONS (APPLICABLE TO ELECTRONIC IGNITION ONLY)

The identification numbers for the components are the same as those in the wiring diagrams

- 16. Ignition coil with power module
- 17. Connection
- 18. Anti-detonation sensor
- 19. H.T. distributor with built in timing sensor
- 40. Battery

- 55. Connector
- 58. Rpm and TDC sensor
- 109. Injection/ignition electronic control unit
- 128. Ignition switch

DIAGRAMS SHOWING IGNITION ADVANCE FOR EIGHT DIFFERENT VACUUM VALUES IN THE INLET MANIFOLD

at an absolute pressure of 0.18 bar (135 mmHg)

at an absolute pressure of 0.299 bar (225 mmHg)

at an absolute pressure of 0.43 bar (321 mmHg)

at an absolute pressure of 0.54 bar (405 mmHg)

at an absolute pressure of 0.70 bar (525 mmHg)

at an absolute pressure of 0.92 bar (690 mmHg)

M

at an absolute pressure of 1,38 bar (1035 mmHg)

at an absolute pressure of 1,80 bar (1350 mmHg)

43

Electrical equipment: electronic injection/ignition

00.55

Diagram showing I.A.W. injection/ignition system

- 1. Fuel tank
- 2. Electric fuel pump
- 3. Fuel filter
- 4. Fuel manifold
- 5. Fuel pressure regulator
- 6. Intake air absolute pressure sensor
- 7. HT distributor with injection timing sensor
- 8. Butterfly valve position sensor
 9. Intake air temperature sensor
 10. TDC and rpm sensor
- 11. Electronic control unit
- 12. Injector

- 13. Battery
- 14. Ignition switch
- 15. Injection/ignition control relays
- 16. Additional air solenoid valve for engine idle automatic adjustment
- 17. Coolant temperature sensor
- 18. Spark plugs
- 19. Ignition unit

- 20. Butterfly valve
 21. Diagnostic socket
 22. Over-boost solenoid valve
 23. Detonation sensor

Diagram showing over-boost device

- 1. Duct connecting by-pass valve and duct downstream of butterfly
- 2. Duct connecting by-pass valve and duct upstream of butterfly
- 3. By-pass valve
- 4. Duct connecting by-pass valve and duct downstream of compressor
- 5. Winding for over-boost control valve
- 6. Duct connecting over-boost valve and inlet duct downstream of compressor
- 7. Over-boost control valve
- 8. Waste-gate valve
- 9. Actuator
- 10. Butterfly valve

Operation

The over-boost device allows the turbocharger to operate at a higher supercharging pressure than normal. The following two conditions must be realized to obtain over-boost pressure:

- 1) fully depress the accelerator pedal;
- 2) the engine must be operating at a speed between 2400 and maximum revs

When the turbocharger is working normally the adjustment of the maximum supply pressure takes place by means of the opening of the waste-gate valve (8). In actual fact the pressure on the actuator (9) diaphragm is the supercharging pressure i.e. the pressure upstream of the compressor. This pressure exerts a force on the actuator diaphragm; when this pressure overcomes the opposing force of the spring the waste-gate valve (8) opens

Technical data

DELTA HF integrale

Electrical equipment: over-boost device

00.55

And part of the exhaust gases are diverted from the turbine, depriving it of some power. When the winding (5) is magnetized by the injection/ignition control unit, the valve (7) places the supercharging pressure for the duct (6) in contact with the inlet duct downstream of the compressor discharging the pressure at the actuator (9) diaphragm: this reduction in force at the actuator diaphragm causes the waste-gate val-

ve (8) to partly close as a result of which a greater amount of gases supply the turbine increasing its speed and

consequently that of the compressor thereby also increasing the supercharging pressure.

Mechanical by-pass valve

The aim of this valve is to reduce and cancel the "gust of air" each time the accelerator pedal is released hurriedly when the engine is being supercharged.

When the butterfly valve (10) closes, the vacuum from the duct (2) connected to the inlet manifold opens the valve (3); this opening allows the pressure downstream of the butterfly (closed) to be discharged downstream of the compressor and cancel the pressure waves which cause noisy operation (gusts of air).

